Let f,g and hbe real valued functions defined on the interval [0,1] byf(x)=ex2+e−x2, g(x)=xex2+e−x2 and h(x)=x2ex2+e−x2. If a, b and c denote, respectively, the absolute maximum of f, g and h on [0,1], then
a = b = c
f(x)=ex2+e−x2⇒f′(x)=2x(ex2−e−x2)≥0.∀x∈[0,1]
∴ f(x) is an increasing function on [0,1]
Hence fmax=f(1)=e+1e=a
g(x)=xex2+e−x2⇒g′(x)=(2x+1)ex2−2xe−x2≥0,∀x∈[0,1]
∴g(x) is an increasing function on [0,1]
∴gmax=g(1)=e+1e=bh(x)=x2ex2+e−x2h′(x)=2x[ex2(1+x2)−e−x2]≥0,∀x∈[0,1]
∴ h(x) is an increasing function on [0,1]
∴hmax=h(1)=e+1e=c
Hence a =b = c.