The correct option is D Maximum value of g(f(x)) is 73.
f(x)=324+x2+x4
Clearly, domain of f is R.
Since x4+x2+4∈[4,∞),
∴ Range of f is (0,8]
h(f(x))>0 and h(g(x))<0
Since f(x)∈(0,8] and g(x)∈[9,∞),
h(0)≥0⇒k≥0
h(8)>0⇒−64−24+k>0⇒k>88
h(9)<0⇒−81−27+k<0⇒k<108
Hence, k∈{89,90,…,106,107}
Number of integral values of k is 19.
Since f(x)∈(0,8],
∴ Maximum value of g(f(x)) is g(8)=64+9=73