Let F(K)= (1+sinπ2k)(1+sin(k−1)π2k)(1+sin(2k+1)π2k)(1+sin(3k−1)π2k) The value of F(1)+F(2)+F(3) is equal to
A
316
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
516
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
716
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D716 F(1)=(1+sinπ2)(1+0)(1+sin3π2)(1+sinπ)=(1+1)(1+0)(1−1)(1+0)=0F(2)=(1+sinπ4)(1+sinπ4)(1+sin5π4)(1+sin5π4)=(1+sinπ4)2(1+sin5π4)2=(1+1√2)2(1−1√2)2=14F(3)=(1+sinπ6)(1+sin2π6)(1+sin(π+π6)(1+sin(π+2π6))=(1+sinπ6)(1−sinπ6)(1+sin(2π6)(1−sin(2π6))=(1−sin2π6)(1−sin22π6)=(1−3/4)(1−1/4)=316F(1)+F(2)+F(3)=0+14+316=716