wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let fk(x)=1k(sinkx+coskx) where xϵR and k1. Then f4(x)f6(x) equals

A
112
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 112
Given : fk(x)=1k(sinkx+coskx)
For k=4
f4(x)=14(sin4x+cos4x)
=14((sin2x+cos2x)22cos2xsin2x)
(a4+b4=(a2+b2)22a2b2,sin2x+cos2x=1)
=14(12cos2xsin2x)
For k=6
f6(x)=16(sin6x+cos6x)
=16((sin2x+cos2x)33cos2xsin2x(sin2x+cos2x))
(a6+b6=(a2+b2)33a2b2(a2+b2),sin2x+cos2x=1)
=16(13cos2xsin2x)
Now f4(x)f6(x)
=1412cos2xsin2x16+12cos2xsin2x=112

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Animal Tissues
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon