Let fk(x)=1k(sinkx+coskx) where x∈R and k≥1. Then f4(x)−f6(x)=?
f4(x)=14(sin4x+cos4x)=14{(sin2x+cos2x)2−2sin2xcos2x}=14(1−2sin2xcos2x)
f6(x)=16(sin6x+cos6x)=16{(sin2x+cos2x)(sin4x+cos4x−sin2xcos2x)}=16{(1)(1−3sin2xcos2x)}=16(1−3sin2xcos2x)
f4(x)−f6(x)=14−12sin2xcos2x−16+12sin2xcos2x=14−16=112
Answer: option (B)