Let f:(−1,1)→R be a differential function with f(0)=−1 and f′(0)=1. Let g(x)=[f(2f(x)+2)]2
Consider the given function.
g(x)=[f(2f(x)+2)]2
On differentiating both sides with respect to x, we get
g′(x)=2[f(2f(x)+2)]×f′(2f(x)+2)×2f′(x)
On putting x =0,
Therefore,
g′(x)=2[f(2f(0)+2)]×f′(2f(0)+2)×2f′(0)
Since, f(0)=−1,f′(0)=1
Therefore,
g′(0)=2[f(2×−1+2)]×f′(2×−1+2)×2×1
g′(0)=2[f(0)]×f′(0)×2
g′(0)=2[−1]×1×2
g′(0)=−2×1×2
g′(0)=−4
Hence, the value of g′(0)=−4.