The correct option is C limx→0xx∫0f(t)dt1−ex2=−1
f(0)=1 and π/3∫0f(t)dt=0
Consider function g(x)=x∫0f(t)dt−sin3x
g(x) is continuous and differentiable function.
g(0)=0 and g(π3)=0
By Rolle's theorem, g′(x)=0 has at least one solution in (0,π3)
So, f(x)−3cos3x=0 for some x∈(0,π3)
Consider function h(x)=x∫0f(t)dt+cos3x+6πx
h(x) is continuous and differentiable function and h(0)=1, h(π3)=1
By Rolle's theorem, h′(x)=0 for at least one x∈(0,π3)
So, f(x)−3sin3x+6π=0 for some x∈(0,π3)
L=limx→0xx∫0f(t)dt1−ex2 (00 form)
By L' Hopital rule,
L=limx→0xf(x)+x∫0f(t)dt−2xex2 (00 form)
Again by L' Hopital rule,
L=limx→0xf′(x)+f(x)+f(x)−4x2ex2−2ex2=0+2f(0)−0−2=−1
limx→0sinxx∫0f(t)dtx2 (00 form)=limx→0 sinxf(x)+cosxx∫0f(t)dt2x (00 form)
=limx→0cosx⋅f(x)+sinx⋅f′(x)+cosx⋅f(x)−sinx⋅∫x0f(t)dt2=1+0+1−02=1