The correct option is B sin−1(x−22)+π6
f(x)=√3sinx−cosx+2
=2sin(x−π6)+2 ⋯(1)
Since, π3≤x≤2π3
⇒π6≤x−π6≤π2
⇒12≤sin(x−π6)≤1
⇒3≤2sin(x−π6)+2≤4
⇒ Range of f(x) is [3,4]
Also, f(x) is strictly increasing in its domain.
∴f(x) is invertible and inverse exists as it is one-one and onto.
From y=f(x), x=f−1(y)
Substituting x=f−1(y) in (1), we get
y=2sin(f−1(y)−π6)+2
⇒sin(f−1(y)−π6)=y−22
⇒f−1(y)−π6=sin−1(y−22)
⇒f−1(y)=sin−1(y−22)+π6
∴f−1(x)=sin−1(x−22)+π6