Let f:(−1√2,1]→(−∞,ln√2] be a function defined as f(x)=ln(x+√1−x2)andg(x)=x2f(x) .
If f(x0)=ln√2, then
A
g(x0)=1√2ln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
g(x0)=log2e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
g′(x0)=2√2log2e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
g′(x0)=√2loge2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cg′(x0)=2√2log2e f(x0)=ln√2=ln(x0+√1−x20) (√2−x0)2=1−x20 2+x20−2√2x0=1−x20 2x20−2√2x0+1=0 x0=2√2±02×2⇒x0=1√2
So g(x0)=12×1ln√2=log2e g′(x)=f(x).2x−x2f′(x)f2(x)⇒g′(x0)=2√2log2e
Because, f′(x0)=0.