Let f(x+y2)=12(f(x)+f(y)) for real x and y. If f' (0) = ā 1 and f(0) = 1 then f(2) is
1
-1
12
2
f′(x)=limh→0f(x+h)−f(x)h=limh→0f(2x)+f(2h)2hf′(x)=1;f(2x)=2(x)−1⇒f(x)=1−x
If f:R→R satisfies f(x+y)=f(x)+f(y), for all x,y∈R and f(1)=7 ,then ∑nr=1f(r) is