The correct option is
D (0,π4)Given
g(x)=f(sinx)+f(cosx)Differentiating w.r.t x, we get
g′(x)=f′(sinx).cosx−f′(cosx).sinx
Again differentiating w.r.t x, we get
g′′(x)=−f′(sinx).sinx+f′′(sinx).cos2x−f′(cosx).cosx+f′′(cosx).sin2x ...(2)
Now, given f′(sinx)<0⇒f′(sin(π2−x))<0(∵x∈(0,π2)⇒π2−x∈(0,π2))
⇒f′(cosx)<0 ...(2)
Similarly f′′(sinx)>0⇒f′′(sin(π2−x))>0⇒f′′(cosx)>0 ...(3)
∴g′′(x)>0 ( Using (1),(2) and (3) )
⇒g′(x) is increasing in (0,π2).
Also g′(π4)=0
⇒g′(x)>0∀x∈(π4,π2) and g′(x)<0∀x∈(0,π4)
Thus g(x) is decreasing in (0,π4)