wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=ax2+bx2+cx+d and g(x)=x2+x2.
If limx1f(x)g(x)=1 and limx2f(x)g(x)=4, then find the value of c2+d2a2+b2

Open in App
Solution

f(x)=ax3+bx2+cx+d,g(x)=x2+x2=(x1)(x2)
limx1f(x)g(x)=1
For limit to exist, f(1)=0a+b+c+d=0(1)
limx1f(x)g(x)=limx13ax2+2bx+c2x+1=13a+2b+c=3(2)
limx2f(x)g(x)=2
For limit to exist, f(2)=08a+4b+2c+d=0(3)
limx2f(x)g(x)=limx23ax2+2bx+c2x+1=112a+4b+c=20(4)
Solving (1),(2),(3) and (4)
a=23,b=95,c=124,d=52
c2+d2a2+b2=180809554=1.89

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Continuous Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon