f′′(x)=sec4(x)+4We write above euation as-
f′(x)=∫sec4(x)dx+4∫dx ......(1)
Let solve I=∫sec4 x dx
∫sec4x dx=∫sec2x.sec2x dx
using Integration by part
∫udv=uv−∫vdu dx
u=sec2x and dv=sec2x
∫sec2x.sec2x dx=tanx.sec2x−2∫tan2x.sec2x dx
∫sec4x dx=tanx.sec2x−2∫(sec2x−1).sec2 dx {sec2x−1=tan2x}
∫sec4x dx=tanx.sec2x−2∫(sec4x−sec2x) dx
∫sec4x dx=tanx.sec2x−2∫sec4x+2∫sec2x dx
3∫sec4x dx=tanx.sec2x+2∫sec2x dx
∫sec4x dx=13tanx.sec2x+23tanx
Lets put this result into equation (1)
f′(x)=13tanx.sec2x+23tanx+4x+c where c is integration constant
Now let's put boundary condition f′(0)=0
f′(0)=0=13tan(0).sec(0)+23tan(0)+4.0+c
hence c=0
f′(x)=13tanx.sec2x+23tanx+4x
f(x)=13∫tanx.sec2x dx+23∫tanx dx+4∫x dx
let tanx=t, sec2x dx=dt
f(x)=13∫t dt+23log(|sec x|)+2x2+c1 {∫tanx dx=log(|sec x|)}
f(x)=13t22+23log(|sec x|)+2x2+c1
Now let's again put boundary condition f(0)=0
f(0)=0+23log(sec(0))+0+c1=0
f(0)=0+23log(1)+0+c1=0
f(0)=0+23.0+0+c1=0
c1=0
f(x)=t26+23log(|sec x|)+2x2
Now back substituting t value-
f(x)=tan2x6+23log(|sec x|)+2x2
Option b is correct answer.