The correct option is D 32
Let I=3∫0f(x)dx(x(x−3)+1) …(1)
⇒I=3∫0 f(3−x)((3−x)(−x)+1)=3∫0 f(3−x)((x)(x−3)+1) …(2)
Adding (1)+(2),
2I=3∫0f(x)+f(3−x)(x(x−3)+1)dx
Given, f(x)+f(x−3)=x(x−3)+1
Replace x by 3−x
f(3−x)+f(−x)=f(3−x)+f(x)=x(x−3)+1
{∵f(x) is an even function }
Now, 2I=3∫0 x(x−3)+1x(x−3)+1dx
⇒2I=3⇒I=32