The correct option is B a=2x0, b=−x20
For f to be continuous everywhere, we must have
x20=f(x0)=limx→x0+f(x)=ax0+b
Also, f has a derivative at x0 if f′(x0+)=f′(x0−),
Now,
f′(x0+)=limh→0+f(x0+h)−f(x0)h
=limh→0+a(x0+h)+b−x20h
=limh→0+(ax0+b−x20h+a)=limh→0+a=a [∵x20=ax0+b]
and
f′(x0−)=limh→0−f(x0+h)−f(x0)h
=limh→0−(x0+h)2−x20h
=limh→0−x20+h2+2x0h−x20h
=limh→0−(h+2x0)=2x0
Hence a=2x0, and b=x20−ax0=x20−2x20=−x20