f(x)=∣∣
∣
∣∣sec2x11cos2xcos2xcosec2x1cos2xcot2x∣∣
∣
∣∣
Applying C2→C2−cos2xC1, we get
f(x)=∣∣
∣
∣∣sec2x01cos2xcos2x−cos4xcosec2x10cot2x∣∣
∣
∣∣=(cos2x−cos4x)(sec2xcot2x−1)=cos2xsin2x(csc2x−1)=cos2xsin2xcot2x=cos4x
A) Period of cos4x is π
B) As 0≤cos4x≤1 maximum value of f(x) is 1
C) ∫π/40f(x)dx−14=∫π/4018(3+4cos2x+cos4x)dx−14
=14[3x+2sin2x+14sin4x]π/40−14=18(3π4+2)−14=3π32
D) As 0≤cos4x≤1 minimum values of f(x) is 0