f(x)=∣∣
∣
∣∣sinxsin(x+h)sin(x+2h)sin(x+2h)sinxsin(x+h)sin(x+h)sin(x+2h)sinx∣∣
∣
∣∣Now,Δ=sin3x+sin3(x+h)+sin3(x+2h)−3sinxsin(x+h).Δ1=3sin2(x+h)cos(x+h)+6sin2(x+2h)cos(x+2h)−3sinxcos(x+h)sin(x+2h)−6sinxsin(x+h)cos(x+2h)Now,LHospitalRule,Δ11=6sin(x+h)cos2(x+h)−3sin3(x+h)+24sin(x+2h)cos2(x+2h)−12sin3(x+2h)−3sinxsin(x+h)sin(x+2h)−6sinxcos(x+2h)−sinxcos(x+h)cos(x+2h)+12sinxsin(x+h)sin(x+2h).limh→0=Δh2=limh→0Δ112Δ11=6sinxcos2x−3sin3x+24sinxcos2x−12sin2+3sin3x−6sinxcos2x−6sinxcos2x+12sin3xΔ11=18sinxcos2xso,limh→0=18sinxcos2x2=9sinxcos2x