wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=∣ ∣ ∣sinxsin(x+h)sin(x+2h)sin(x+2h)sinxsin(x+h)sin(x+h)sin(x+2h)sinx∣ ∣ ∣.

Open in App
Solution

f(x)=∣ ∣ ∣sinxsin(x+h)sin(x+2h)sin(x+2h)sinxsin(x+h)sin(x+h)sin(x+2h)sinx∣ ∣ ∣Now,Δ=sin3x+sin3(x+h)+sin3(x+2h)3sinxsin(x+h).Δ1=3sin2(x+h)cos(x+h)+6sin2(x+2h)cos(x+2h)3sinxcos(x+h)sin(x+2h)6sinxsin(x+h)cos(x+2h)Now,LHospitalRule,Δ11=6sin(x+h)cos2(x+h)3sin3(x+h)+24sin(x+2h)cos2(x+2h)12sin3(x+2h)3sinxsin(x+h)sin(x+2h)6sinxcos(x+2h)sinxcos(x+h)cos(x+2h)+12sinxsin(x+h)sin(x+2h).limh0=Δh2=limh0Δ112Δ11=6sinxcos2x3sin3x+24sinxcos2x12sin2+3sin3x6sinxcos2x6sinxcos2x+12sin3xΔ11=18sinxcos2xso,limh0=18sinxcos2x2=9sinxcos2x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon