The correct options are
B limx→1−f(x)=0
C limx→1+f(x) does not exist
f(x)=1−x(1+1−x)1−xcos(11−x) for x<1
=1−x(2−x)1−xcos(11−x)
=1−2x+x21−xcos(11−x)
and f(x)=1−x(1+x−1)x−1cos(11−x) for x>1
=1−x2x−1cos(11−x)
Now limx→1+f(x)=limx→1+1−x2x−1cos(11−x)
=limx→1−(x−1)(x+1)x−1cos(11−x)
=limx→1−(x+1)cos(11−x)
=−2×limx→1cos(11−x)
=does not esist
similarly, limx→1−f(x)=limx→1−1−2x+x21−xcos(11−x)
=limx→1(x−1)2−(x−1)cos(11−x)
=limx→1−(x−1)cos(11−x)
=0×limx→1cos(11−x)
=0
So, limx→1+f(x) does not exists and limx→1−f(x) =0