wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=192x32+sin4πx for all xR with f(12)=0. If m112f(x)dxM, then the possible values of m and M are ?

A
m=13,M=24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
m=14,M=12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
m=11,M=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
m=1,M=12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D m=1,M=12
Givenf(x)=192x32+sin4πx
f(x)=192x32+sin4πxdx
f(12)=0(given) and m112f(x)dxM
As 12x1
Hence sin4πx will range from 0 to 1 as sinπ2=1 and sinπ=0
Hence 2+sin4πx will range from 2+0=2 to 2+1=3
Hence we have 192t33f(x)192t32
1923x12t3dtx12f(x)dx1922x12t3dt
1923[t44]x12[f(x)]x121922[t44]x12
16[x4116]f(x)24[x4116]
16x41f(x)24x432
112(16x41)dx112f(x)dx112(24x432)dx
165(1132)12112f(x)dx245(1132)32×12
2610112f(x)dx3910 on simplification
If 112f(x)dx12112f(x)dx1
If 112f(x)dx3910112f(x)dx12
Hence m=1 and M=12

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon