The correct option is
D m=1,M=12Givenf′(x)=192x32+sin4πx
⇒f(x)=∫192x32+sin4πxdx
f(12)=0(given) and m≤∫112f(x)dx≤M
As 12≤x≤1
Hence sin4πx will range from 0 to 1 as sinπ2=1 and sinπ=0
Hence 2+sin4πx will range from 2+0=2 to 2+1=3
Hence we have 192t33≤f′(x)≤192t32
⇒1923∫x12t3dt≤∫x12f′(x)dx≤1922∫x12t3dt
⇒1923[t44]x12≤[f(x)]x12≤1922[t44]x12
⇒16[x4−116]≤f(x)≤24[x4−116]
⇒16x4−1≤f(x)≤24x4−32
⇒∫112(16x4−1)dx≤∫112f(x)dx≤∫112(24x4−32)dx
⇒165(1−132)−12≤∫112f(x)dx≤245(1−132)−32×12
⇒2610≤∫112f(x)dx≤3910 on simplification
If ∫112f(x)dx≥12⇒∫112f(x)dx≥1
If ∫112f(x)dx≤3910⇒∫112f(x)dx≤12
Hence m=1 and M=12