Let f(x)=x(1+xn)1n for n≥2 and g(x)=(fofo.....of)foccursntimes(x) .Then ∫xn−2g(x)dx equals
A
1n(n−1)(1+nxn)1−1n+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1(n−1)(1+nxn)1−1n+K
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1n(n+1)(1+nxn)1+1n+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1(n+1)(1+nxn)1+1n+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1(n−1)(1+nxn)1−1n+K f(x)=x(1+xn)1nfof(x)=x(1+xn)1n(1+xn1+xn)1n=x(2+xn)1nfofof3times(x)=x(1+xn)1n(2+xn1+xn)1n=x(3+xn)1ng(x)=fofof.....fntimes(x)=x(n+xn)1n∫xn−2g(x)dx=∫xn−1(n+xn)1ndx[n+xn=tn⇒xn−1dx=tn−1dt]=∫tn−1dt(tn)1n=∫tn−2dt=tn−1n−1=1n−1(n+xn)n+1n+C