wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let F(x)=x20t25t+4dt

Open in App
Solution

F(x)=x20(t25t+4)dt

On Leibnitz Formula:-

F(x)=ddxx20(t25t+4)dt=(x25x2+4)2x0

For monotonicity, first we find F(x)=0

(x45x2+4)2x=0

2x(x24)(x23)=0

x(x2)(x+2)(x1)(x+1)=0


Refer image.

F(x) increases in interval (2,1)(0,1)(2,)

F(x) decreases in interval (,2)(1,0)(1,2)

Now,
F(1)=10t25t+4dt=[t335t22+4t]10=1352+4
=116
F(2)=20t25t+4dt=[t335t22+4t]20

=83202+8=23

1461711_195485_ans_d99c748906e54ab2b5c22a883810820d.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon