F(x)=∫x20(t2−5t+4)dt
On Leibnitz Formula:-
F′(x)=ddx∫x20(t2−5t+4)dt=(x2−5x2+4)2x−0
For monotonicity, first we find F′(x)=0
∴(x4−5x2+4)2x=0
2x(x2−4)(x2−3)=0
x(x−2)(x+2)(x−1)(x+1)=0
Refer image.
F(x) increases in interval (−2,−1)∪(0,1)∪(2,∞)
F(x) decreases in interval (−∞,−2)∪(−1,0)∪(1,2)
Now,
F(1)=∫10t2−5t+4dt=[t33−5t22+4t]10=13−52+4
=116
F(√2)=∫20t2−5t+4dt=[t33−5t22+4t]20
=83−202+8=23