The correct options are
B f(8π9)=e13π/18
C f(−7π4)=eπ/12
f(x)=ecos−1sin(x+π/3)
f(x)=ecos−1cos(π2−(x+π3))
=ecos−1cos(π6−x)
f(x)=e(π6−x)
Now, we will check using options
Option A, f(5π9)=e(π6−5π9)=e−7π18
Option B, f(8π9)=e(π6−8π9)=e−13π18
Option C, f(−7π4)=e(π6+7π4)=e23π12