Let f(x),g(x) and h(x) be continuous function on [0,a] such that f(x)=f(a−x),g(x)=−g(a−x),3h(x)−4h(a−x)=5 then ∫a0f(x)g(x)h(x)dx is equal to
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B0 It is given that f(a−x)=f(x) g(a−x)=−g(x) h(a−x)=3h(x)−54 Hence I=∫a0f(x).g(x).h(x).dx I=∫a0f(a−x)g(a−x)h(a−x).dx =∫a0−f(x)g(x)(3h(x)−54).dx =∫a0−3g(x).f(x).h(x)4+5f(x).g(x)4.dx Hence 2I=∫a0f(x).g(x).h(x)−3g(x).f(x).h(x)4+5f(x).g(x)4.dx =∫a0f(x).g(x).h(x)+5f(x).g(x)4.dx I=14∫a0f(x).g(x).h(x).dx+54∫a0f(x).g(x).dx I=I4+54∫a0f(x).g(x).dx 3I4=54∫a0f(x).g(x).dx I=53∫a0f(x).g(x).dx ...(i) And I=53∫a0f(a−x).g(a−x).dx I=−53∫a0f(x).g(x).dx ..(ii) Adding i and ii, we get 2I=0 Or I=0.