The correct option is B x=2 is point of inflexion
f(x)=∫x1{2(t−1)(t−2)3+3(t−1)2(t−2)2}dt
⇒ f′(x)=2(x−1)(x−2)3+3(x−1)2(x−2)2
=(x−1)(x−2)2[2(x−2)2+3(x−1)]
=(x−1)(x−2)2(5x−7)
for absolute values f′(x)=0
⇒ x=1,2,75
and f′′(x)=(x−2)2(5x−7)+5(x−1)(x−2)2+2(x−1)(x−2)(5x−7)
∴ f′′(1)=−2<0
∴ x=1 is point of absolute maxima.
∴ choice (a) is false.
f′′(75)=5(25)(−35)2>0
∴ x=75 is point of absolute minima
∴ Choice (b) is false.
Again f′′(2)=0 but after checking we find f′′′(2)≠0
∴ x=2 is point of inflection.
Ans: C