wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=x2+1x2 and g(x)=x1x,xϵR{1,0,1}. If h(x)=f(x)g(x). Then the local minimum value of h(x) is:

A
22
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 22
Given:
f(x)=x2+1x2
g(x)=x1x
h(x)=f(x)g(x)
To find:
Minimum value of h(x)

Solution:
h(x)=f(x)g(x)
h(x)=x2+1x2x1x
h(x)=(x1x)2+2x1x
h(x)=(x1x)+2x1x
Differentiate both the sides
h(x)=(1+1x2)2(x1x)2(1+1x2)
h(x)=(1+1x2)⎜ ⎜ ⎜ ⎜ ⎜12(x1x)2⎟ ⎟ ⎟ ⎟ ⎟
h(x)=(1+1x2)⎜ ⎜ ⎜ ⎜ ⎜(x1x)22(x1x)2⎟ ⎟ ⎟ ⎟ ⎟
h(x)=(1+1x2)(x1x)2((x1x)22)
h(x)=x2+1(x1x)2x2((x21)22x2x2)
Equating h'(x)=0, we get
h(x)=x2+1(x1x)2x4((x21)22x2)=0
((x21)22x2)=0
(x4+12x22x2)=0
(x4+14x2)=0
(x22)23=0
(x22)2=3
(x22)=±3
x2=2±3
x2=(3±1)22
x=±3±12
As xR{1,0,1}
x=3+12
and
1x=23+1
1x=23+13131
1x=312
Now,
x1x=3+12312
x1x=22
x1x=2
Also,
h(x)=(x1x)+2x1x
putting the value,
h(x)=2+22
h(x)=22






flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon