⇒f′(x)=4x3−24x2+44x−24⇒f′(x)=4(x−1)(x−2)(x−3)
which shows f(x)is increasing in [1,2]∪[3,∞) and decreasing in (−∞,1]∪[2,3].
Thus, minimum f(x);x≤t≤x+1,−1≤x≤1
⇒ minimum f(x)={f(x+1),−1≤x≤0f(1),0<x≤1
Thus, g(x)=⎧⎨⎩f(x+1),−1≤x≤0f(1),0<x≤1x−10,x>1=⎧⎪⎨⎪⎩(x+1)4−8(x+1)3+22(x+1)2−24(x+1),−1≤x≤01−8+22−24,0<x≤1x−10,x>1
⇒g(x)=⎧⎨⎩x4−4x3+4x2−9,−1≤x≤0−9,0<x≤1x−10,x>1
Also, g′(x)=⎧⎨⎩4x3−12x2+8x,−1≤x≤00,0<x≤11,x>1
which clearly shows g(x) is continuous in [−1,∞), but not differentiable at x=1.