The correct option is D 8
We have f(x,y)=f(x)f(y) for all x,y∈R.
Putting x=y=1, we get
f(1)=f(1)f(1)
⇒f(1)[1−f(1)]=0
⇒f(1)=1 [∵f(1)≠0]
Now, f′(1)=2
⇒limh→0f(1+h)−f(1)h=2
⇒f(1)limh→0f(h)−1h=2
⇒limh→0f(1)f(h)−f(1)h=2 [using f(1)=1]
⇒limh→0f(h)−1h=2 ....(i)
Now, f′(4)=limh→0f(4+h)−f(4)h
=limh→0f(4)⋅f(h)−f(4)h
={limh→0f(h)−1h}⋅f(4)=2f(4) ....{from (i)}
=2×4=8