The correct option is D f(2),f(3) and f(4) are in H.P.
f(1)+2f(2)+3f(3)+4f(4)+…+nf(n)=n(n+1)f(n)⇒f(1)+2f(2)+3f(3)+4f(4)+…+(n−1)f(n−1)=n2f(n)⇒f(n)=n−1∑r=1rf(r)n2
Putting n=2
f(2)=f(1)4=14
Putting n=3
f(3)=f(1)+2f(2)9=16
Putting n=4
f(4)=f(1)+2f(2)+3f(3)16=18∴f(n)=12n
⇒f(1003)=12006,f(999)=11998,f(1998)=13996
Also, f(2),f(3) and f(4) are in H.P.