The correct option is B g(y)=4y4−3y
f(x)=4x3x+4 (x≠−43)
Let f(x)=y
⇒y=4x3x+4
⇒y(3x+4)=4x
⇒3xy+4y=4x
⇒3xy−4y=−4y
⇒x(3y−4)=−4y
⇒x=−4y3y−4 (y≠43)
⇒x=−4y−1(−3y+4)
⇒x=4y(4−3y)
So, inverse of f is,
f−1=4y(4−3y)
∴g(y)=4y(4−3y)
Hence, B is the correct answer