The correct option is D f(0)=4
Given : x∫0tf(x−t) dt=e2x−1
Putting t→x−t
x∫0(x−t)f(t) dt=e2x−1⇒xx∫0f(t) dt−x∫0tf(t) dt=e2x−1
Differentiating both sides w.r.t. x, we get
xf(x)+x∫0f(t)dt−xf(x)=2e2x⇒x∫0f(t)dt=2e2x⇒f(x)=4e2x∴f(0)=4
Let g(x)=f−1(x), so
g(f(x))=x⇒g′(f(x))×f′(x)=1
Putting x=0, we get
g′(4)=18∴(f−1)′(4)=18
Now, df(x)dex=d(4e2x)dxd(ex)dx=8e2xex
⇒df(x)dx∣∣∣x=0=8
limx→0f(x)−4x=limx→04e2x−4x=limx→08(e2x−1)2x=8