The correct option is D limx→−2√3f(x)=5π12.
f(x) is an even function.
Hence, f is not injective.
We have f(x)=cot−1(2−|x|2+|x|)
=π2−tan−1(2−|x|2+|x|)=π2−tan−1⎛⎜
⎜
⎜⎝1−|x|21+|x|2⎞⎟
⎟
⎟⎠
=π2−(tan−11−tan−1|x|2)f(x)=π4+tan−1|x|2
Since tan−1|x|2∈[0,π2),
∴f(x)∈[π4,3π4)
Hence, f(x) is not surjective.
f(x)=⎧⎪⎨⎪⎩π4−tan−1x2,x≤0π4+tan−1x2,x>0f′(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩−11+(x/2)2⋅12,x≤011+(x/2)2⋅12,x>0
f′(0+)=12 and f′(0−)=−12
Clearly, f(x) is non-differentiable at x=0
Also, f is non-periodic.
limx→−2√3f(x)=limx→−2√3(π4−tan−1x2)=5π12