The correct option is D The derivative f′(0) is equal to 1
f′(x)=limh→0f(x+h)−f(x)h
=limh→0f(x)+f(h)+f(x)f(h)−f(x)h
=limh→0f(h)(f(x)+1)h
=limh→0hg(h)(f(x)+1)h
=f(x)+1 (∵limx→0g(x)=1)
∴f′(x)=f(x)+1
f′(x)1+f(x)=1
On integrating both sides, we get ∫f′(x)1+f(x)dx=∫dx
⇒ln(f(x)+1)=x+C ⋯(1)
f(x+h)=f(x)+f(h)+f(x)f(h) for all x,h∈R
⇒limh→0f(x+h)=limh→0 [f(x)+f(h)+f(x)f(h)]
⇒limh→0f(x+h)=f(x)+limh→0 [hg(h)+f(x)hg(h)]
⇒limh→0f(x+h)=f(x)+0=f(x)
Similarly, limh→0f(x−h)=f(x)
∴f is continuous for all x∈R
⇒f(0)=limh→0f(h)=0
Now, putting x=0 in equation (1)
ln(1+f(0))=C
⇒C=0
∴1+f(x)=ex
f(x)=ex−1
f′(x)=ex
f′(1)=e and f′(0)=1
g(x)=f(x)x=⎧⎨⎩ex−1x,x≠01,x=0
We have to check differentiability at x=0
g′(0+)=limh→ 0⎛⎜
⎜
⎜⎝eh−1h−1h⎞⎟
⎟
⎟⎠
=limh→ 0(eh−1−hh2)=12
g′(0−)=limh→ 0⎛⎜
⎜
⎜
⎜⎝e−h−1−h−1−h⎞⎟
⎟
⎟
⎟⎠
=limh→ 0(e−h−1+hh2)=12
If g(0)=1, then g is differentiable at x=0 and hence differentiable at every x∈R