Let f:R→R be a differentiable function such that f(x)=x2+x∫0e−tf(x−t)dt. Then, the value of 1∫0f(x)dx is
A
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−112
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
512
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
127
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C512 f(x)=x2+x∫0e−tf(x−t)dt⋯(i)
Using the property: b∫af(x)dx=b∫af(a+b−x)dx ⇒f(x)=x2+x∫0e−(x−t)f(x−(x−t))dt =x2+e−xx∫0etf(t)dt⋯(ii)
Differentiating w.r.t. x, we get ⇒f′(x)=2x−e−xx∫0etf(t)dt+e−xexf(x) ⇒f′(x)=2x−e−xx∫0etf(t)dt+f(x) ⇒f′(x)=2x+x2[Using equation (ii)] ⇒f(x)=x33+x2+c
Also, f(0)=0[From equation (i)] ⇒f(x)=x33+x2 1∫0f(x)dx=1∫0(x33+x2)dx =[x412+x33]10=112+13=512