The correct option is B surjective but not injective
f(x)=x2+x∫0e−tf(x−t)dt⋯(i)
Using the property:
b∫af(x)dx=b∫af(a+b−x)dx
⇒f(x)=x2+x∫0e−(x−t)f(x−(x−t))dt
=x2+e−xx∫0etf(t)dt⋯(ii)
Differentiating w.r.t. x, we get
⇒f′(x)=2x−e−xx∫0etf(t)dt+e−xexf(x)
⇒f′(x)=2x−e−xx∫0etf(t)dt+f(x)
⇒f′(x)=2x+x2 [Using equation (ii)]
⇒f(x)=x33+x2+c
Also, f(0)=0 [From equation (i)]
⇒f(x)=x33+x2
⇒f(x)=x2(x+33)
Clearly, f(0)=f(−3)=0
⇒f(x) is not injective function.
and range =R= co-domain,
hence f(x) is surjective.