Let f:R→R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f′(y)+f′(x)f(y) for all x,y∈R. Then the value of loge(f(4)) is
Open in App
Solution
P(x,y):f(x+y)=f(x)f′(y)+f′(x)f(y) P(0,0):f(0)=f(0)f′(0)+f′(0)f(0)⇒f′(0)=12(∵f(0)=1) P(x,0):f(x)=f(x)f′(0)+f′(x)f(0)⇒f′(x)=12f(x) ⇒f′(x)f(x)=12 ⇒∫f′(x)f(x)dx=∫12dx ⇒logef(x)=x2+C
substituting x=0, we get C=0(∵f(0)=1) ∴logef(x)=x2 ⇒logef(4)=42=2