I=2∫−1xf(x2)2+f(x+1)dx
Given f(x)={[x], x≤2 0, x>2
f(x+1)={[x+1], x+1≤2 0, x+1>2⇒f(x+1)={[x]+1, x≤1 0, x>1
Now,
f(x2)={[x2], x2≤2 0, x2>2⇒f(x2)={[x2], x∈[−√2,√2] 0, x∈(−∞,−√2)∪(√2,∞)
Now,
I=2∫−1xf(x2)2+f(x+1)dx⇒I=√2∫−1xf(x2)2+f(x+1)dx⇒I=0∫−1xf(x2)2+f(x+1)dx+1∫0xf(x2)2+f(x+1)dx+√2∫1xf(x2)2+f(x+1)dx⇒I=0∫−1x⋅02+0dx+1∫0x⋅02+1dx+√2∫1x⋅12+0dx⇒I=√2∫1x2dx⇒I=[x24]√21⇒I=14∴4I−1=0