wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Let f:RR be a function defined by f(x)={[x], x2 0, x>2,
where [x] is the greatest integer less than or equal to x. If I=21xf(x2)2+f(x+1)dx, then the value of (4I1) is

Open in App
Solution

I=21xf(x2)2+f(x+1)dx

Given f(x)={[x], x2 0, x>2
f(x+1)={[x+1], x+12 0, x+1>2f(x+1)={[x]+1, x1 0, x>1
Now,
f(x2)={[x2], x22 0, x2>2f(x2)={[x2], x[2,2] 0, x(,2)(2,)

Now,
I=21xf(x2)2+f(x+1)dxI=21xf(x2)2+f(x+1)dxI=01xf(x2)2+f(x+1)dx+10xf(x2)2+f(x+1)dx+21xf(x2)2+f(x+1)dxI=01x02+0dx+10x02+1dx+21x12+0dxI=21x2dxI=[x24]21I=144I1=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon