The correct option is D f is neither one-one nor onto
f(x)=e|x|−e−xex+e−x
f(x)=⎧⎪⎨⎪⎩ex−e−xex+e−x,x≥00,x<0
For x<0,f(x)=0
⇒f is not a one-one function.
For x≥0,
f(x)=ex−e−xex+e−x =e2x−1e2x+1
f′(x)=(e2x+1)e2x⋅2−e2x⋅2⋅(e2x−1)(e2x+1)2
=4e2x(e2x+1)2>0 ∀ x≥0
⇒f(x) is a strictly increasing function.
Also, f(0)=0 and l=limx→∞e2x−1e2x+1=limx→∞1−1e2x1+1e2x=1
∴f(x)∈[0,l)=[0,1)
⇒f is not an onto function.
∴f is neither one-one nor onto.