y=3x2+mx+nx2+1
⇒yx2+y=3x2+mx+n
⇒(y−3)x2−mx+(y−n)=0
Since x∈R,
∴D≥0 and y≠3
⇒m2−4(y−3)(y−n)≥0
⇒m2−4(y2−(n+3)y+3n)≥0
⇒4(y2−(n+3)y+3n)−m2≤0
⇒4y2−4(n+3)y+(12n−m2)≤0, y≠3 ⋯(1)
But it is given that range is [−4,3)
⇒y∈[−4,3)
⇒(y+4)(y−3)≤0, y≠3
⇒y2+y−12≤0, y≠3
⇒4y2+4y−48≤0, y≠3 ⋯(2)
Comparing (1) and (2), we get
n+3=−1⇒n=−4
and 12n−4m2=−48
⇒−48−4m2=−48
⇒m2=0
Hence, m2+n2=0+16=16