Let f:R→R be a function which satisfies f(x+y)=f(x)+f(y) ∀x,y∈R. If f(1)=2 and g(n)=(n−1)∑k=1 f(k),n∈N then the value of n, for which g(n)=20, is:
If f:R→R satisfies f(x+y)=f(x)+f(y), for all x,y∈R and f(1)=7 ,then ∑nr=1f(r) is