The correct option is
A f(1e)<f(1)<f(e)We know that
f:R→R is an odd function. hence
f(−x)=−f(x)
Or f(x)+f(−x)=0 ....(1)
Let's put x=0 in the eq.(1), we get f(0)+f(0)=0
⇒f(0)=0
Now the given condition is f(ex)=ef(x) ....(2)
Now let's put x=0 in the equation (2), we get →f(e0)=ef(0)
From above calculations we know that f(0)=0,
⇒f(e0)=e0
∵e0=1, Hence ⇒f(1)=1 ....(3)
Now let's put x=1 in eq(2), we get ⇒f(e)=ef(1)
∵f(1)=1, hence f(e)=e.....(4)
Now if we out x=−1 in the equation (2), we get ⇒f(1e)=ef(−1)
As the function f is odd function, so f(−x)=−f(x) or f(−1)=−f(1)=−1
Hence f(1e)=e−1=1e
⇒f(1e)=1e ...(5)
Now from eq. (3),(4) and (5) we have,
⇒f(1)=1
⇒f(e)=e
⇒f(1e)=1e
Hence f(1e)<f(1)<f(e)
Correct option is A.