wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f:RR be defined as f(x)=exsinx. If F:[0, 1]R is a differentiable function such that F(x)=x0f(t)d(t), then the value of 10(F(x)+f(x))exdx lies in the interval

A
[330360,331360]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
[327360,329360]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
[331360,334360]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
[335360,336360]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A [330360,331360]
F(x)=x0f(t)d(t)
Applying Leibnitz theorem,F(x)=f(x)
I=10(F(x)+f(x))exdx=102f(x)exdx
I=102sinxdx
I=2(1cos1)
=[1(1122!+144!166!)]

Now,
2[1(112+124)]<2(1cos1)<2[1(112+1241720)]
330360<2(1cos1)<331360
330360<I<331360

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Set Operation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon