Let f:R→R be defined as f(x+y)+f(x−y)=2f(x)f(y), f(12)=−1. Then the value of 20∑k=11sin(k)sin(k+f(k)) is equal to
A
cosec2(21)cos(20)cos(2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sec2(21)sin(20)sin(2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sec2(1)sec(21)cos(20)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cosec2(1) cosec(21)sin(20)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dcosec2(1) cosec(21)sin(20) ∵f(x+y)+f(x−y)=2f(x).f(y)∴f(x)=cos(λx)
Given that f(12)=−1, cos(λ2)=−1⇒λ=2nπ,n∈I ∴f(x)=cos(2πx)⇒f(k)=1,k∈I