We have, g′(1)=1f′(1) [From (1)]
⇒g′(1)=15
and g′′(1)=−f′′(1)(f′(1))3=−8125
limx→1x5−5g(x)g′(x)sin(x−1) (00form)
Using L'Hospitals rule, we get
limx→15x4−5g(x)g′′(x)−5(g′(x))2cos(x−1)
=5−5g(1)g′′(1)−5(g′(1))2cos(0)
=5−5×1×(−8125)−5×125
=12825=pq
∴p−5q=128−125=3