The correct option is C g(1)>1−loge2
Given:
f′(x)=(e(f(x)−g(x)))g′(x)
⇒e−f(x)⋅f′(x)=e−g(x)⋅g′(x)
Integrating w.r.t. x, we get
⇒e−f(x)=e−g(x)+C
Putting x=1, we get
1e=1eg(1)+C⇒e−1−e−g(1)=C⋯(i)
Putting x=2, we get
1ef(2)=1e+C⇒e−f(2)−e−1=C⋯(ii)
Subtracting (ii) from (i), we get
⇒−e−g(1)−e−f(2)+2e−1=0⇒e−g(1)+e−f(2)=2e−1
As exponential function is always positive, so
e−f(2)<2e−1; e−g(1)<2e−1
Taking log, we get
−f(2)<loge2−1; −g(1)<loge2−1
Therefore,
f(2)>1−loge2g(1)>1−loge2