f(x)−f(x2)=x2 ...(1)
f(x2)−f(x4)=x4 ...(2)
. . .
f(x2n−1)−f(x2n)=x2n ...(n)
Adding eqn(1),(2),...,(n), we get
f(x)−f(x2n)=x2+x4+...+x2n
Applying limit both the sides
f(x)−limn→∞f(x2n)=limn→∞x2(1+12+14+...∞)
⇒f(x)−f(0)=x2×⎛⎜
⎜
⎜⎝11−12⎞⎟
⎟
⎟⎠
⇒f(x)−1=x
⇒f(x)=x+1 ∀ x∈R
∴f(2020)=2020+1=2021