wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f:RR be a differentiable function satisfying f(3)+f(2)=0. Then limx0(1+f(3+x)f(3)1+f(2x)f(2))1/x is equal to :

A
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
e1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1
L=limx0(1+f(3+x)f(3)1+f(2x)f(2))1/x [1 form]

L=exp(limx01x[1+f(3+x)f(3)1+f(2x)f(2)1])

=exp(limx01x[f(3+x)f(3)f(2x)+f(2)1+f(2x)f(2)])

=exp(limx0f(3+x)f(2x)+f(2)f(3)x)

Applying L'Hopital rule, we get
L=exp(limx0f(3+x)+f(2x)1)

=exp(f(3)+f(2))

=exp(0)=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
L'hospitals Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon