We have
f(x)=e+(1−x)ln(xe)+x∫1f(t) d(t) ⋯(1)
⇒f(x)=e+(1−x)(lnx−1)+x∫1f(t) d(t)
Differentiating both sides with respect to x, we get
f′(x)=1−lnx+(1−x)1x+f(x)
⇒f′(x)−f(x)=(1x−lnx)
Multiplying both sides with e−x, we get
e−xf′(x)−e−xf(x)=e−x(1x−lnx)
⇒ddx(e−x⋅f(x))=e−x(1x−lnx)
Integrating both sides with respect to x, we get
e−xf(x)=∫e−x(1x−lnx)dx
⇒e−xf(x)=e−xlnx+λ
⇒f(x)=lnx+λex ⋯(2)
Now, putting x=1 in equation (1), we get
f(1)=e ⋯(3)
∴ Using (2) and (3), we get λ=1
Thus, f(x)=ex+lnx
Hence, g(x)=xlnx
Now, A=∣∣
∣∣1∫0xlnx dx∣∣
∣∣=14
⇒A−2=16