The correct options are
B 2f(1)=[limx→0(1+2x)1/x], where [.] denotes the greatest integer function
C The minimum value of f is −92
D f′(1)=4
f(x+y)=f(x)+f(y)+xy for all x,y∈R ⋯(1)
f′(x)=limh→0f(x+h)−f(x)h
=limh→0f(x)+f(h)+xh−f(x)h
=limh→0f(h)+xhh
=limh→0f(h)h+limh→0x
=3+x
∴f(x)=3x+x22+C
Putting x=y=0 in (1), we get
f(0)=2f(0)⇒f(0)=0
So, C=0
Hence, f(x)=3x+x22
limx→0(1+2x)1/x=e2
∴[limx→0(1+2x)1/x]=7
Also, 2f(1)=7
Putting f′(x)=0, we get
x=−3
f′′(x)=1>0
∴fmin=f(−3)=−92
f′(1)=3+1=4