If f(x)=1+12+13+14+....+1n
f(n+2)=1+12+13+14+....+1n+1n+1+1n+2
f(n+2)−f(n)=2n+3(n+1)(n+2)
(n + 1)(n + 2) f(n + 2) = (n + 1)(n + 2) f(n) + 2n + 3
p(n)=n2+3n+2,q(n)=2n+3
(P) m∑n=1(n+3)=m∑n=1n+3m∑n=11=m(m+1)2+3m=m(m+1−6)2=m(m+7)2
(Q) m∑n=1n=m(m+1)2
(R) m∑n=1p(n)+q2(n)−11n=m∑n=1n2+3n+2+4n2+9+12n−11n=m∑n=15n2+15nn
=m∑n=15n+15=5m∑n=1n+15m∑n=11=5m(m+1)2+15m=5m(m+1+6)2=5m(m+7)2
(S) m∑n=1q2(n)−p(n)−7n=m∑n=13n+9=3m∑n=1n+9m∑n=1=3m(m+1)2+9m=3m(m+1+6)2=3m(m+7)2