wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(n) = 1+12+13+14+...+1n such that P(n)f(n + 2) = P(n)f(n) + q(n) then match the following List I with List II

Open in App
Solution

If f(x)=1+12+13+14+....+1n
f(n+2)=1+12+13+14+....+1n+1n+1+1n+2
f(n+2)f(n)=2n+3(n+1)(n+2)
(n + 1)(n + 2) f(n + 2) = (n + 1)(n + 2) f(n) + 2n + 3
p(n)=n2+3n+2,q(n)=2n+3
(P) mn=1(n+3)=mn=1n+3mn=11=m(m+1)2+3m=m(m+16)2=m(m+7)2
(Q) mn=1n=m(m+1)2
(R) mn=1p(n)+q2(n)11n=mn=1n2+3n+2+4n2+9+12n11n=mn=15n2+15nn
=mn=15n+15=5mn=1n+15mn=11=5m(m+1)2+15m=5m(m+1+6)2=5m(m+7)2
(S) mn=1q2(n)p(n)7n=mn=13n+9=3mn=1n+9mn=1=3m(m+1)2+9m=3m(m+1+6)2=3m(m+7)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Decimal Representation of Rational Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon