The correct option is D f(100)=tan−1(101)−π4
f(n)=n∑k=1cot−1(k2+k+1)
Let f(k)=cot−1(k2+k+1)
=tan−1(1k2+k+1)
=tan−1[(k+1)−k1+(k+1)k]=tan−1(k+1)−tan−1(k)
Thus, the required sum of n terms of the given series is
f(n)=(tan−12−tan−11) +(tan−13−tan−12) . . . +(tan−1(n+1)−tan−1n)
⇒f(n)=tan−1(n+1)−tan−11
⇒f(n)=tan−1(n+1)−π4